inapoi_______inapoi la cuprins______inainte
U V L
A S
ECHIPAMENT
LASER PORTABIL PENTRU DECONTAMINAREA OBIECTELOR DE ARTA ŞI DOCUMENTELOR
Roxana Radvan*
Roxana Savastru*
Cristian Deciu*
Walter Maracineanu*
INTRODUCERE
Lucrarea
prezintă succint principalele etape parcurse în vederea realizării
unui echipament laser portabil pentru decontaminarea materialelor specifice.
Studiul efectului letal sau de reducere a viabilităţii unor specii
microbiologice selectate dintre cele mai răspândite şi a aprecierii
eficienţei iradierii laser a reprezentat prima etapă de studiu.
Verificarea stabilităţii cromatice a stratului obiectului de
artă – cel mai adesea policrom –
în urma iradierii laser în aceleaşi condiţii a reprezentat a doua
etapă de lucru care a precedat realizarea modelului UVLAS.
Trebuie
subliniat că evaluarea viabilităţii este efectuată pentru
probe cu un net avantaj către dezvoltare decât cele aflate în
condiţii reale. Prin urmare, rezultate modeste în reducerea
viabilităţii culturilor monitorizate conduc la rezultate pozitive în
condiţii concrete.
DETERMINAREA REGIMULUI OPTIM DE LUCRU PENTRU UVLAS
Microorganisme implicate în biodeteriorarea picturii murale
Microorganismele
care se dezvolta la suprafaţa sau în profunzimea picturii murale
aparţin bacteriilor, fungilor şi algelor. Tipul de microorganism
predominant este dependent de compoziţia chimica a substratului,
temperatură şi umiditate. În timp, acelaşi substrat va fi
colonizat de diferite tipuri de microorganisme care determină
apariţia unor morfologii specifice de biodeteriorare. În timp, bacteriile
chimioautotrofe şi cele autotrofe încetează activitatea vitală
şi îmbogăţesc în compuşi organici substratul. Aceste
modificări de natură chimică determină dezvoltarea
bacteriilor heterotrofe (nu au capacitatea de a sintetiza compuşii organici;
în nutritie îi preiau din substrat).
Prezenţa
compuşilor organici de origine biologica într-un substrat anorganic
favorizează şi dezvoltarea fungilor microscopici (microorganisme
heterotrofe). Frecvent întâlnite pe pictura murală sunt genurile: Aureobasidium,
Ulocladium, Cladosporium, Walhemia, Penicillium, Aspergillus, Geotrichum,
Mucor, Rhizopus.
Acizii
anorganici (H2SO4, HNO3) sau organici (citric, oxalic, gluconic)
acţionează ca agenţi de chelatare, extrăgând ionii de
calciu, magneziu, fier, astfel încât suprafaţa respectiva îşi pierde
integritatea prin modificările de coeziune. Enzimele (amilaze, proteaze,
celulaze) acţionează asupra substraturilor specifice (amidon,
proteine din cleiuri, celuloză). Acestea determină de asemenea
pierderea coeziunii substratului. Pigmenţii sunt localizaţi în celule
sau sunt eliberaţi la exterior determinând modificări ale culorilor
(modificări estetice).
Microorganismele
pot acţiona ca biodeteriogeni şi mecanic. Astfel hifele fungice sau
ale actinomicetelor pătrund prin fisuri determinând lărgirea
acestora. Acest mecanism de acţiune nu este izolat şi este
însoţit de cel biochimic. În procesul de aderare a unor microorganisme, la
substrat intervin polizaharidele extracelulare care acţionează direct
asupra substratului pictural.
Distribuţia
numerică a microorganismelor pe pictura murală existentă într-o
biserica este diferita (tabelul nr. 1). De asemenea este diferită şi
apartenenţa taxonomica a microorganismelor care se dezvoltă pe aceeaşi
scena, în funcţie de condiţiile de microclimat şi de
nutrienţii disponibili.
Tabelul
nr. 1 Apartenenţa taxonomică şi
distribuţia numerică a fungilor pe frescele Sf. Augustin şi Sf.
Jerome
Specii |
Unităţi
formatoare de colonii (UFC) |
|
fresca
Sf. Augustin |
fresca
Sf. Jerome |
|
Aspergillus flavus |
- |
3 |
Aspergillus sydowi |
- |
2 |
Aspergillus versicolor |
- |
660 |
Aspergillus sydowi
Aspergillus versicolor |
- |
1 |
Aspergillus sp. |
- |
2 |
Botrytis cinerea |
1 |
2 |
Cladosorium cladosporioides |
74 |
- |
Cladosorium sphaerospermum |
3 |
204 |
Coniothyrium cerealis |
- |
1 |
Engyodontium sp. |
1 |
- |
Oidiodendron cerealis |
2 |
- |
Penicillium brevi-compactum |
340 |
- |
Penicillium chrysogenum |
- |
3 |
Penicillium meleagrinum |
1 |
- |
Penicillium notatum |
- |
1 |
Penicillium purpurogenum |
100 |
- |
Penicillium rugulosum |
13 |
2 |
Penicillium variabile |
18 |
8 |
Trichoderma harzianum |
2 |
1 |
Decontaminarea cu agenţi fizici
Operele
de artă pot fi decontaminate prin tratament cu radiaţii gamma sau
fascicule laser. Literatura de specialitate recomandă folosirea
radiaţiilor gamma pentru distrugerea insectelor xilofage şi a
fungilor din structura obiectelor din lemn (icoane, mobilier, sculpturi)
şi a documentelor. În ultimul caz se constată îngălbenirea
substratului.
EXPERIMENTE, MATERIALE ŞI METODE
Au
fost realizate mai multe experimente în care s-a testat eficienţa mai multor
lungimi de undă.
Un
prin experiment a utilizat radiaţia emisă de un laser cu azot. Au
fost expuse iradierii trei tulpini aparţinând genurilor Alternaria,
Ulocladium şi Chaetomium. La baza acestei decizii au stat
următoarele considerente:
·
tulpinile au fost izolate de pe o
pictură murală aflată în Sighişoara;
·
în probele recoltate au avut
frecvenţa cea mai mare;
·
sunt întâlnite frecvent pe picturi
murale din biserici;
·
Alternaria şi Ulocladium sintetizează pigmenţi melanici cu rol
protector faţă de radiaţii;
·
Chaetomium formează periteci şi pigment verde care conferă
de asemenea rezistenţa faţă de radiaţii.
S-au
expus iradierii următoarele variante:
·
Spori şi hife recoltate prin
tehnica amprentei pe o bandă adezivă transparentă;
·
Fragmente de culturi (spori şi
hife) dezvoltate pe mediul nutritiv (cartof-glucoză-agar).
S-au
folosit două nivele de energii E1 = 0.09 mJ/cm2 (U=5kV) şi
E2=0.2 mJ/cm2 (U=7,5kV)
şi un număr variabil de pulsuri (10; 50; 100; 200) în cazul iradierii
benzilor adezive şi un numar fix de pulsuri (200) în cazul culturilor.
S-au
iradiat 24 probe pentru cele trei tulpini dispuse pe benzi adezive corespunzând
la câte 4 probe pentru fiecare energie. În cazul culturilor s-au iradiat 6
probe (câte una pentru fiecare energie, corespunzător celor trei culturi).
Fasciculul provine de la un laser cu azot molecular a cărei lungime de
undă este de 332,1 nm.
După
iradiere materialul expus a fost menţinut la întuneric pentru a
preîntâmpina fotoreactivarea.
În
laboratorul de microbiologie materialul biologic a fost prelucrat pentru
determinarea ratei de supravieţuire. Raportarea s-a făcut la
materialul neiradiat.
Probele
martor (neiradiate) au fost prelucrate prin metoda diluţiilor seriate
şi au fost inoculate pentru determinarea concentraţiei totale a
unităţilor formatoare de colonii.
Probele
iradiate au fost de asemenea prelucrate prin metoda diluţiilor seriate
şi au fost inoculate pentru determinarea concentraţiei
unităţilor formatoare de colonii rămase viabile.
Viabilitatea
a fost determinată aplicând următoarea formulă:
Nr. ufc în proba martor - Nr. ufc în proba iradiată
100
Rezultate şi discuţii
Viabilitatea
sporilor (ufc unităţi formatoare de cultură) este afectată
diferit în funcţie de genul fungic şi de nivelul energiei. Astfel,
sporii de Alternaria au fost cei mai sensibili, iar cei de Chaetomium
cei mai rezistenţi.
Nivelul
cel mai mare de energie E2=0.2 mJ/cm2 (=7,5kV) a fasciculului laser
a determinat menţinerea unei viabilităţi ridicate a sporilor de Ulocladium
(aproximativ 90%). Rata redusă a mortalităţi ne determină
să sugeram creşterea energiei, a numărului de pulsuri sau
folosirea unui alt tip de laser.
Nivelul
mai mic de energie E1 = 0.09 mJ/cm2 (U=5kV) nu afectează viabilitatea sporilor de
Ulocladium indiferent de numărul de pulsuri. Semnalăm
apariţia unor mutante modificate morfologic prin iradierea cu E2=0.2 mJ/cm2 (U=7,5kV)
în 200 pulsuri.
În
cazul sporilor de Alternaria energia E2=0.2 mJ/cm2 (U=7,5kV)
aplicată în regimuri diferite, de la 10 la 200 de pulsuri, a determinat o
reducere a viabilităţii (aproximativ 70%).
Energia
E1 = 0.09 mJ/cm2 (U=5kV) aplicata în 10-200 pulsuri nu a afectat
viabilitatea sporilor de Alternaria.
Tabelul nr. 2 Tipuri morfologice de deteriorare a picturii
murale
Tip
morfologic |
Unităţi
formatoare de colonii |
Specia
fungică |
Gen/tip de bacterii
|
Pete alb gălbui, negre pe stratul pictural |
1.0x106 |
Cladosporium sphaerosperum Geomyces pannorum Verticillium lamellicola Beauveria bassiana |
Artobacter sp. Streptomyces sp. Nytrying bacteria Bacillus sp. |
Pete brun-negricioase pe tencuială |
2.5x104 |
Cladosporium
sphaerosperum Geomyces pannorum Verticillium lamellicola Beauveria bassiana Tritirachium album |
Artobacter sp Streptomyces sp. Bacillus sp. Nytrying bacteria |
Pulverulenţă la suprafaţa
cărămizilor |
4.9x105 |
Phalophora sp. Acrodontrum crateriforme Cladosporium sphaerosperum Verticillium lamellicola Fusidium viride Tritirachium album |
Artobacter sp Streptomyces sp. Nytrying bacteria |
Pulverulenţă la suprafaţa pietrei de
construcţie |
1.5x105 |
Tritirachium album Beauveria bassiana Cladosporium sphaerosperum |
Artobacter sp Streptomyces sp. Nytrying bacteria Brevibacterium sp. |
Tabelul nr. 3 Viabilitatea sporilor de Alternaria iradiaţi cu laser
cu azot molecular
Fluenta
laser |
Nr. pulsuri
|
Viabilitatea |
E2=0.2 mJ/cm2 |
10 |
75 |
50 |
80 |
|
100 |
60 |
|
200 |
81 |
|
E1 = 0.09 mJ/cm2
|
10 |
100 |
50 |
100 |
|
100 |
100 |
|
200 |
100 |
|
E2=0.2 mJ/cm2 * |
200 |
100 |
E1 = 0.09 mJ/cm2
* |
200 |
100 |
* = cultură iradiată
Semnalăm
de asemenea aparitia unor mutante modificate morfologic prin iradierea cu E2=0.2
mJ/cm2 (U=7,5kV) cu 200 de
pulsuri. Sporii de Chaetomium nu au fost afectaţi de iradierea cu
laser cu azot molecular indiferent de energia şi pulsurile aplicate. Nu au
fost semnalate mutante modificate morfologic.
Apariţia
formelor mutante demonstrează efectul laserului cu N2 asupra
materialului genetic (ADN). În stadiul actual al cercetărilor nu ne putem
pronunţa asupra capacităţii acestor mutante de a coloniza
pictura murală.
Al
doilea experiment important a utilizat două surse de radiaţie cu
emisii în domenii relativ depărtate: 404 nm şi 407 nm
linii spectrale obţinute prin filtrarea fasciculului emis de lampa cu Hg;
respectiv prima armonică a laserului cu mediu activ solid YAG:Nd
(532nm).
Menţionăm
că efectul fasciculului la 532 nm (de culoare verde) a fost considerat
interesant deoarece acest tip de radiaţie este des experimentat şi
recomandat în tehnicile laser de curtare a obiectelor de arta, deoarece induce
o îngălbenire specifică a substratului mult mai mică decât la
aplicarea regimului fundamental (1064 nm).
Tulpina
Chaetonium sp. este sensibilă la 404-407 nm. Viabilitatea a
scăzut de la 15% (iradiere timp de 5') la 9% (iradiere timp de 15').
Tulpina de Cladosporium sp. este mai puţin sensibilă.
Viabilitatea scade la 90% (iradiere timp de 5') la 88% (iradiere 15').
Iradierea
cu YAG-Nd a fost mai puţin eficientă decât cea cu Hg. La Cladosporium
sp. s-a redus viabilitatea de la 86% iar la Chaetonium sp. la 60%.
ANALIZA STABILITATII CARACTERISTICILOR CROMATICE ALE MATERIALELOR POLICROME
ÎN URMA IRADIERII
În
experimentele celei de-a doua faze a studiului s-a urmărit determinarea eventualelor
alterări cromatice ale substratului. Suprafeţele policrome, sunt se
pare cele mai sensibile la acest tip de radiaţie, de aceea în paralel cu
studiul decontaminării formaţiunilor biologice s-au testat o serie de
probe de culoare diferite ca pigment şi liant. Pentru o analiză
obiectivă şi eficientă s-au propus condiţii experimentale
nefavorabile, mai exact s-a ales o
serie de pigmenţi sensibili la lumină. Pentru probele de tempera
s-au ales pigmenţi care nu au rezistenţă în tehnica a fresco.
Foto 1.
Probe de tempera aplicate pe
suport lemnos.
CULORI
TEMPERA – Culorile tempera (cu emulsie de ou) au fost aplicate pe
un suport de lemn cu preparaţie de praf de cretă + clei de oase
şi pe suport de var cu câlţi (aplicaţi după uscarea
acestuia).
Au
fost analizate următoarele materiale: alb de plumb (2PbCO3); galben de
crom (PbCrO4); roşu cinabru (HgS) – Foto 2 - a; roşu de
natură organică este un colorant de tip antrachinonic; verde de cupru
(verdigris); albastru de Prusia – pigment sintetic, ferocianură
ferică Fe4[Fe(CN)6]3.
CULORI
A FRESCO – Culorile a fresco au fost aplicate pe un suport
de var + câlţi.
Miniu (Pb3O4); Massicot (PbO); albastru smal – silicat de cobalt şi potasiu;
albastru ultramarin – este un silicoaluminat de sodiu – Foto 1, 2 - a, b; cromat de zinc (ZnCrO4); cinabru.
CULORI
ACRILICE: Ocru galben; verde Paolo Veronese, negru mars; alb de titan.
CULORI
ALCHIDICE: Alb de zinc, ocru galben deschis; roşu de cad-miu, verde Paolo
Veronese, negru ivoriu.
Probele
de culoare au fost iradiate în condiţii identice cu cele în care s-au iradiat probele biologice
(laser pulsat cu azot N2, lampa cu vapori de Hg, Laser cu YAG:Nd – prima
armonică).
Imaginile
de mai jos ilustrează zone iradiate (zona inferioară) cu zona martor
(zona superioara) care nu a fost expusa radiaţiei UV.
Foto 2.
Exemplu de probă analizată - Roşu cinabru, grosisment 60x (foto
a), diagramele reflectantei înainte şi după iradiere pentru alb de
Titan - acrilic (foto b)
Foto 3. Probe de culoare aplicate pe suport var +
câlţi; tehnica a fresco – dreapta
imaginii / tehnica a secco – zona stângă a imaginii.
Interpretarea
rezultatelor se face prin analiză vizuală – una dintre metodele de
bază ale restaurării pentru ca oferă informaţii maxime din
punct de vedere al esteticii suprafeţei tratate – şi prin
reflectometrie. În diagrama alăturată sunt prezentate comparativ valorile reflectantei în domeniul vizibil
pentru o probă înainte şi după iradiere. Suprapunerea
completă a celor două diagrame demonstrează – după cum era
şi de dorit – ca valorile cromatice ale probei nu s-au modificat după
iradiere. Toate probele menţionate, supuse la tratamentele cu mai multe
variabile (lungime de undă, fluenţă laser, durata tratamentului)
au dat rezultate similare – foto. 2,b [1,2,3]. În concluzie, tratamentele în
limitele parametrilor menţionaţi pentru decontaminare nu
prezintă riscuri în privinţa conservării culorilor substratului.
UVLAS – ECHIPAMENT CU DIODA LASER UV
Conform
rezultatelor de laborator, lungimea de undă cu eficienţă
maximă în ceea ce priveşte scăderea viabilităţii
biofilmelor este cea înscrisă în domeniul 404–407
nm. Pentru construirea unui echipament care să exploateze această
proprietate, dar care să fie portabil, să asigure o fluenţă
satisfăcătoare şi care să aibă un fascicul bine
direcţionat astfel încât să nu se aplice expunerii necontrolate pe
zone învecinate celor de interes s-a
selecţionat dioda laser UV care emite un fascicul stabil cu
lungimea de unda 405 nm. Comanda diodei laser se face cu ajutorul unei surse de
alimentare şi comanda cu microcontroller (foto 4).
Foto.
4
Programul permite selectarea duratei de iradiere,
fluenţa laser aplicată şi alţi parametrii funcţionali.
Opţional datele se pot insera într-o bază de date digitală
alcătuită din fişe de restaurare.
inapoi_______inapoi la cuprins______inainte
previous_______back to contents_______next
Innovative science applications
for Cultural Heritage preservation
Roxana RADVAN
National Institute
of Research & Development for Optoelectronics INOE
Center for
Restoration by Optoelectronical Techniques CERTO
Platforma Magurele,
P.O.Box MG 5, Bucharest, Romania
e-mail:
radvan@inoe.inoe.ro, web page: http://inoe.inoe.ro/certo
National
Institute of Research and Development for Optoelectronics – INOE (http://inoe.inoe.ro) was organized in 1996 in
concordance with new European research drifts. Beneficiary of the modern and
flexible management of the institute, Department of Advanced methods and
techniques for restoration & conservation successfully applied the
accumulated experience in laser design and laser application, non-conventional
technologies and optoelectronical device design. Due to its performances and
their annual increasing, this department was attested by national competition
as centre of excellence – Centre for Restoration by Optoelectronical Techniques
– CERTO (http://inoe.inoe.ro/certo).
Since 2002, unanimously approved as leader in its field of activity, CERTO is
coordinator of PRO RESTAURO – a national thematic network for advanced research
results implementation in concrete applications
(http://inoe.inoe.ro/prorestauro). First Eureka project with Romanian
coordination was elaborated by INOE-CERTO specialists (E!2094 CLEANART – with application in artwork restoration),
also first COST Action initiated by
Romania – COST G7 „Artwork Conservation by Laser” was promoted by the same
group.
The developed activities are
focused on:
i) optoelectronical independent
or associated methods and equipments for cleaning (especially for small and
delicate pieces, jewellery etc.):
-
laser cleaning high-precision
techniques – through optical microscopy and with various accesories (aiming
system, digital image capture and process recording, information storage in
dedicated database);
-
ultrasound techniques and
methods;
ii) imagery and image
composition analysis
-
high-resolution multispectral image analysis,
-
analitic models for image interpretation in visual arts;
iii) microclimate control, air quality evaluation and
environmental stress impact on
artefacts:
-
microclimate monitoring and air quality evaluation in museums
and
galleries;
-
laser remote sensing for environment control.
All
applications have since different stages stored experimental result in databases.
The diagnostic/technical
resources available to CERTO:
§ High resolution
multispectral camera ARTIST (IART INNOVATION product);
§ Optical
microscopes for laser operations on 2D objects –MicroLASER x-y;
§ Optical
microscopes for laser operations on 3D objects –
MicroLASER x-y -z (portable);
§ ARTIST camera
software
PRO
RESTAURO- NATIONAL THEMATIC NETWORK joins several institutions:
· National Art University from Bucharest, Department
of Restoration;
·
National Museum of History and Archaeology from
Constanta;
·
National Museum of Art from Craiova;
·
Institute of Art History from Romanian Academy of
Science;
·
Institute of Etnography and Folklore from Romanian
Academy of
Science;
·
Institute of Biology from Romanian Academy of Science;
·
Institute of Analytic Instrumentation – Cluj Napoca;
·
Centre for Environment Protection and
Consultancy-“Politehnica”
University
from Bucharest,
·
HAR Foundation.
The paper presents
significant result in main advanced on-going projects:
Microclimate
conditions and systems for museums, galleries, archives
Study of case to Bran Castle
Roxana Savastru*
Cristian Deciu*
Walter Maracineanu*
Ioana Gomoiu**
Dan Mohanu***
The study is
about the assessment of pollution damage and evaluation the costs and benefits
of conservation approaches in one of the most important Romanian historical
site – Bran Castle. One of the very important challenges that arose is the need
to integrate and correlate environment conditions and induced damages. For an
efficient conservation plan it is necessary to know how environmental
pollution, relative humidity and temperature generated damages to cultural
heritage.
Nitrogen dioxide, sulphur dioxide, ozone, hydrogen sulphide and carbonyl
sulphide are the main damage-causing gases present outdoors. Their tolerate
values are indicated by several European standards. They come mainly from fuel
burning in transport, buildings and industry. Biological processes, through the
decay of organic matter, also generate the sulphides. SO2 tarnishes
metals, damages paints and dyes, discolours papers, reduces strength of
textiles, attacks photographic materials.
Much of the nitrogen dioxide and ozone is not formed
directly, but is the product of secondary reactions involving the action of
sunlight on pollutants.
Nitrogen
dioxide from gas stoves, and hydrogen sulphide as a bioeffluent from people
(visitors) and from some interior decorative materials and museum objects
themselves, such as zoological specimens and organic material, especially from
waterlogged sites. Nitrogen dioxide induces fading in textile dyes, reduces
strength of textiles and damages photographic film. Photocopiers and laser
printers, particularly older ones can also give off ozone.
Ozone and
nitrogen oxide in the same room - unfortunately already considered
“ordinary” pollutants – generate the formation of nitric acid and other
reactive secondary products. Pigments and their derivates (tempera and oil
colors), natural mediums (egg emulsions and linseed oil), as well as acrylics
and alkyds paints often absorb ozone and degrade the artwork surface [1]. Ozone cracks rubber, induces fading in dyes,
and attacks photographic materials and damages books.
Also important demonstrated conclusions
of several European projects indicates that:
-
the main
effect of air pollution on hydraulic mortars is gypsum formation, measured also
as soluble sulphate;
-
the
presence of gypsum in hydraulic mortars produces two secondary damaging
products ettringite and thaumasite , measured also as insoluble sulphate;
-
the
ettringite formation depends by material composition (aluminium content).
-
the
thaumasite formation is controlled by SO2 concentration and by atmospheric
parameters.
Among high spread pollutants, SO2
is one of the main pollutant agent damaging hydraulic mortars, which turn out
to be most sensitive building materials because of the formation of primary
and secondary damage products. Although having important implications on the
development of conservation strategies for monuments and historic buildings,
this result is also of great relevance to the built environment as a whole. [2]
The temperature is a very important
factor in conservation of artifacts, as changes of this parameter induce
differential expansions in the materials and tensile strength between the top
layer and undersurface structure. Temperature cycles accelerate fatigue
failure in delicate materials. The surface
of the artwork is first affected and rapidly blasted. In stone’s casuistry,
thermal cycles cause mechanical desegregation of the outer region of stones.
The water activity is always superimposed to the mechanisms of temperature
degradation. The air temperature is a key factor in determining the habitat
for biological life and in their metabolism control [z]. The metabolic
processes are reduced when the temperature is bellow 200C. Favorable
conditions for microbiological processes are between 200C and 350C.
EXPERIMENTAL SET-UP
Metrological sensors network contains
30 double (for temperature and RH) data logger sensors model TP120. Experimental data are analytical and
graphical processed by sensors’ own software and by Lab View software.
Each sensor has own battery that
warrants 5 years autonomy. Temperature range is between -400C and
+800C, sensibility 0.1 0C, and HR range is between 0% and
95 % RH, sensibility 2% for RH. Storage capacity is over 32512 records.
Response time of the sensor is 10 minutes for 63% of the entire scale. Full
database transfer time is maximum 3 minutes.
Figure 1 shows the block scheme of the monitoring system.
Figure 2 shows the program screen: it contains comparative diagrams with
computed average values, with individual sensors’ values, with selected values
by position criteria etc.
The main controlled points are
distributed in various places:
-
the top
of the Castle – outside;
-
in the
indoor yard – in free space;
-
at the
first level – in painted chapel, in solders’ dinning room, in the room from the
basement of the round tower;
-
At the
second floor - in he jail;
-
at the
next floor – in neo-brancovenesc style
room ; in gothic room, in council room, in Queen Elisabeth’s bedroom;
-
at the
upper floor – in Biedermeier room, in King Ferdinand’s room, in neo-baroque
style room, in Spanish room and in queen’s music room.
A particularly attention was given in Chapel. It
is a round room complete covered by large wall painting affected by humidity,
by temperature very significant variations and by microbiological attack. Such
a space must be rigorously controlled in several points of extreme conditions.
Photo 1 shows the collection of biological sample from the Chapel.
Photo 2 – The sensors were fixed in the most critical areas of the selected
chambers.
Sensors network in this room control highest point
(next to Jesus Pantocrator icon), window area, door area, a very bottom point
on the opposite wall in front of the window and in front of the door, half
height of the same wall – point with maximum natural illumination.
CONCLUSIONS
The collection
of the Bran Castle contains various art objects and historical documents. The
condition of ancient documents and books preservation in this museum are very difficult
to be ensured. Because of them, the main part of the collection is stoned in
different buildings of the museum complex. The violent variations of
humidity and temperatures are dangerous to all art objects, but the
impropriate light mainly affects paper and leather objects. The display cases,
because of the strait space, are located close to the windows and that affects
seriously the exposed documents through fading processes. Among those documents
there are some which testify the importance of Bran Castle in the political and
economic life of this zone, therefore the importance of their proper conservation
“Casa de ceai” (Tea House), “Inima reginei” (Queen`s hart”) and “Vama” (The
Customs House) are other three small buildings in the museum`s park. In these
spaces are deposited the most sensible documents and objects from the museum`s
patrimony.
The on-going project has
preliminary results, which consisting in determination of the risks sources
and main urgent measures for degradation stopping. The design network of
sensors and dedicated software respect general restrictions and European
standard rules and guidelines for microclimate control in museums, archives
and galleries.
The present stage of the
project is focused on the construction of a smart monitoring system. The number
of sensors and input data is in continuous increasing and due to LabView
facilities ad-hoc function of risk evaluation can be ordered. One of the first
functions is to pre-signal limit values exceed.
In spite of the artwork or
ancient building dimensions – impressive or very fine – each restoration case
must start with few obligatory steps:
- intimation
of the existing risk and its mechanism of deterioration;
- definition
of the involved material acting, of the artwork techniques influence in the
deterioration process, and microclimate
conditions role;
- construction
of a precise system for material/environment stability.
Obviously, optomechanical
and optoelectronical equipment are most suitable groups of techniques for this
sort of applications. They can assure non-contact methods or less destructive
precise control systems for on-line environment control and for real-time
control of the artwork response to the microclimate stress.
COST ACTION G7 “ARTWORK CONSERVATION BY LASER” –
A PAN-EUROPEAN STRUCTURE FOR A MODERN PROVOCATIVE DOMAIN
Roxana RADVAN
COST – European Cooperation for Science
and Technology is a cooperative framework maintained by European countries
since 1971. In 1995, the COST family comprises 25 states as well as the
European Commission. COST cooperation is thus essentially based on direct
interaction between research teams in Europe, but the cooperation is supported
and backed up by the Governments of the participating countries.
Recently, a multidisciplinary approach
of study and preservation aspects of Cultural Heritage has created the new
Interdisciplinary field of Artwork Conservation by Laser.
By combining the advances of laser
technology - science and applications – with the modern conservation science,
the field aims at scientific and technological benefits.
COST G7 is one of the on-going action
started mid 1999 and includes delegates from 20 countries (Austria, Belgium,
Cyprus, Denmark, France Finland, Germany, Greece, Hungary, Italy, Latvia,
Malta, The Netherlands, Norway, Poland, Portugal, Romania, Slovenia, Spain,
United Kingdom).
COST ACTION’S MAIN AREAS
Laser-based techniques offer many
unique possibilities for the examination and conservation of artworks. The
laser is a modern, highly controllable and versatile tool.
COST Action G7 has been set up to
address challenges in three main areas- working groups:
(i)
Laser
systems for investigation and diagnosis;
(ii)
Laser
systems for real-time monitoring of environmental pollution;
(iii)
Laser
Systems for cleaning applications.
A very important contribution of this
COST Action is to the prevention of cultural heritage deterioration: work on
developing techniques for monitoring the quality of indoor and outdoor
atmospheres is proposed in parallel with restoration and conservation work.
It is counter- productive to spend a
great deal of effort in restoration and conservation without taking action to
minimize the risks of future damage to the artwork. The partners’ profiles
present the skills and expertise available to this COST action.
The first working group embraces
research, training aspects and other activities related to laser cleaning,
the most widely known application in the field. It is composed of representatives of 41 Institutions. The members have
several backgrounds:
(i)
Physicists, Chemists, Biologists and Engineers performing fundamental and applied research
on laser cleaning systems and laser-matter interactions on diverse substrates:
paper, parchment, stone, canvas and mural paintings, glass, ceramics and
metals;
(ii)
Conservation scientist & Conservators specialized in the pre-quated materials;
(iii)
Laser Manufacture & Equipment companies.
The second working group (33
Institutions from 19 COST Countries) performs both fundamental and applied
research on Laser and Optical techniques, systems and protocols for analysis
and diagnostics of works of art and related activities (conservation, display,
cataloguing).
Fundamental
research is largely devoted to the investigation of the potential of laser
spectroscopic techniques (laser-induced fluorescence, LIF;
laser-induced-breakdown spectroscopy, LIBS; Raman and Infrared spectroscopy) as
tools for the characterization of materials (e.g. LIF for pigments, binding
media, varnishes; LIBS for pigments, stratigraphic analysis, on-line monitoring).
Other laser-based techniques (3-D scanning, holography, holographic
interferometry,
Doppler
vibrometry, fluorescence imaging either spectrum- or time-resolved or both),
non-laser related optical techniques (diffuse-reflectance spectroscopy,
colorimetry), and techniques borrowed from other fields, such as nuclear
physics, are the subject of basic research investigating their potential for
the characterization of processes (ageing, restoration, ablation, weathering,
structural alteration etc.).
The most
developed applied research activities are related to the monitoring of various
conservation procedures including laser-assisted and traditional cleaning
applications.
Early detection
of defects and damage is also carried out by a number of groups. These
applications already concern real artifacts and valuable objects. Nevertheless
the WG2 members have agreed to undertake a specific task on development and
validation of protocols for structural defect diagnosis, for in situ chemical analysis and for
analytical methodology before any intervention on artworks, facades and
buildings.
The third working group covers the
existing gaps in research on environmental aspects (e.g. continuous monitoring
of pollution and/or light levels) in relation to their specific effects on the
art pieces. The significance of the action lies on the unique
multidisciplinary approach towards the common goal of the preservation of
Cultural heritage.
The remit of
this working group includes the evaluation of current measurement techniques
available for the monitoring/characterization of an artwork and its
environment. Such techniques have many applications including: (i) characterization
of the state of an artwork prior to intervention (thereby allowing choice of
the most appropriate form of treatment), (ii) characterization of the response
of an artwork to its environment under different weathering conditions
and (iii) on-line process (cleaning) control.
The main
focus of WG3 is exploitation of advances in laser and electro-optic
technologies for development of cost-effective and non-invasive in situ environmental
monitoring instruments. These will allow fast, accurate monitoring of the
local environment to which an artwork is exposed, thereby enabling detailed
study of the effect of various environmental parameters on the artwork and the
causes of deterioration.
ARTWORK
CONSERVATION BY LASER IN EUROPE DATABASE
A database
containing information on publications, laser cleaning systems, laser and
optical methods for monitoring, analysis and diagnostics, and future demands
for research in the field is available for downloading at http://alpha1.infim.ro/cost
.
The purpose
of the database is to collect together important information from the field of
lasers and optical methods in conservation so that it becomes easily accessible
to people working in the field. This work is part of the European Co-operation
in the field of Scientific and Technical Research (COST) Program of the
European Commission: COST Action G7 ‘Artwork Conservation by Laser’.
The database
has following main sectors:
Task 1 - a
bibliographic database containing information on publications in the
field;
Task 2a - contains information on all conservation
laser cleaning systems manufactured in Europe. This includes commercially
available systems, prototype systems and systems in institutions where access
and expertise can be made available through collaborative projects.
Task 2b -
This contains information on laser and optically based techniques suitable for
environmental monitoring, analysis and diagnostics of artworks.
Task 3 - This is a database containing information on the future demands
for research in the field of COST Action G7.
previous_______back to
contents_______next
* Institutul Naţional de Cercetare Dezvoltare pentru
Optoelectronică INOE, Centrul pentru Restaurare cu Tehnici
Optoelectronice CERTO
Platforma
Magurele, P.O.Box MG 5, Bucharest, Romania e-mail: radvan@inoe.inoe.ro, web
page: http://inoe.inoe.ro
** Institutul pentru
Biologie – Academia Româna de Ştiinţe
* National Institute of Research & Development for Optoelectronics INOE, Centre for Restoration by Optoelectronical Techniques CERTO
** Institute of Biology - Romanian Academy of Science
*** University of Arts from Bucharest - Dept. Restoration & Conservation